TRPM7 is a molecular substrate of ATP-evoked P2X7-like currents in tumor cells
نویسندگان
چکیده
Within the ion channel-coupled purine receptor (P2X) family, P2X7 has gained particular interest because of its role in immune responses and in the growth control of several malignancies. Typical hallmarks of P2X7 are nonselective and noninactivating cation currents that are elicited by high concentrations (0.1-10 mM) of extracellular ATP. Here, we observe spurious ATP-induced currents in HEK293 cells that neither express P2X7 nor display ATP-induced Ca(2+) influx or Yo-Pro-1 uptake. Although the biophysical properties of these ionic currents resemble those of P2X7 in terms of their reversal potential close to 0 mV, nonrectifying current-voltage relationship, current run-up during repeated ATP application, and augmentation in bath solutions containing low divalent cation (DIC) concentrations, they are poorly inhibited by established P2X7 antagonists. Because high ATP concentrations reduce the availability of DICs, these findings prompted us to ask whether other channel entities may become activated by our experimental regimen. Indeed, a bath solution with no added DICs yields similar currents and also a rapidly inactivating Na(+)-selective conductance. We provide evidence that TRPM7 and ASIC1a (acid-sensing ion channel type Ia)-like channels account for these noninactivating and phasic current components, respectively. Furthermore, we find ATP-induced currents in rat C6 glioma cells, which lack functional P2X receptors but express TRPM7. Thus, the observation of an atypical P2X7-like conductance may be caused by the activation of TRPM7 by ATP, which scavenges free DICs and thereby releases TRPM7 from permeation block. Because TRPM7 has a critical role in controlling the intracellular Mg(2+) homeostasis and regulating tumor growth, these data imply that the proposed role of P2X7 in C6 glioma cell proliferation deserves reevaluation.
منابع مشابه
Functional evidence for the expression of P2X1, P2X4 and P2X7 receptors in human lung mast cells.
BACKGROUND AND PURPOSE P2X receptors are widely expressed in cells of the immune system with varying functions. This study sought to characterize P2X receptor expression in the LAD2 human mast cell line and human lung mast cells (HLMCs). EXPERIMENTAL APPROACH Reverse transcriptase polymerase chain reaction (RT-PCR) and patch clamp studies were used to characterize P2X expression in mast cells...
متن کاملP 107: P2x7 Receptors: as a Novel Targets for the Treatment of Neuroinflammation
P2x7 receptors are Purineric receptors that are extracellular ATP-gated ion channel. These receptors require high dose or prolonged exposure to ATP for initial activation. The Activation of these receptors facilitates the formation of inflammasome which activates caspase 1. The P20 and P10 subunits of caspase 1 form active enzyme that then releases active interleukin (IL)-1 β and IL-18, tu...
متن کاملCoordinate effects of P2X7 and extracellular acidification in microglial cells
Extracellular adenosine 5'-triphosphate (ATP) is a damage-associated molecular pattern and contributes to inflammation associated diseases including cancer. Extracellular acidosis is a novel danger signal in the inflammatory sites, where it can modulate inflammation, immunity and tumor growth. Extracellular acidification was shown to inhibit P2X7-mediated channel currents, while it remains unkn...
متن کاملFunctional expression of purinergic P2X7 receptors in pregnant rat myometrium.
ATP has been reported to enhance the membrane conductance of myometrial cells and uterine contractility. Purinergic P2 receptor expression has been reported in the myometrium, using molecular biology, but the functional identity of the receptor subtype has not been determined. In this study, ATP-induced currents were recorded and characterized in single myometrial cells from pregnant rats using...
متن کاملEvidence for functional P2X4/P2X7 heteromeric receptors.
The cytolytic ionotropic ATP receptor P2X7 has several important roles in immune cell regulation, such as cytokine release, apoptosis, and microbial killing. Although P2X7 receptors are frequently coexpressed with another subtype of P2X receptor, P2X4, they are believed not to form heteromeric assemblies but to function only as homomers. Both receptors play a role in neuropathic pain; therefore...
متن کامل